机器学习(ML)已经证明了用于准确和结晶材料的准确性能预测的承诺。为了化学结构的高度精确的ML型号的化学结构属性预测,需要具有足够样品的数据集。然而,获得昂贵的化学性质的获得和充分数据可以是昂贵的令人昂贵的,这大大限制了ML模型的性能。通过计算机视觉和黑暗语言处理中数据增强的成功,我们开发了奥古里希姆:数据八级化图书馆化学结构。引入了弃头晶系统和分子的增强方法,其可以对基于指纹的ML模型和图形神经网络(GNNS)进行脱颖而出。我们表明,使用我们的增强策略意义地提高了ML模型的性能,特别是在使用GNNS时,我们开发的增强件在训练期间可以用作广告插件模块,并在用不同的GNN实施时证明了有效性。模型通过Theauglichem图书馆。基于Python的封装我们实现了EugliChem:用于化学结构的数据增强库,可公开获取:https://github.com/baratilab/auglichem.1
translated by 谷歌翻译
The data used to train deep neural network (DNN) models in applications such as healthcare and finance typically contain sensitive information. A DNN model may suffer from overfitting. Overfitted models have been shown to be susceptible to query-based attacks such as membership inference attacks (MIAs). MIAs aim to determine whether a sample belongs to the dataset used to train a classifier (members) or not (nonmembers). Recently, a new class of label based MIAs (LAB MIAs) was proposed, where an adversary was only required to have knowledge of predicted labels of samples. Developing a defense against an adversary carrying out a LAB MIA on DNN models that cannot be retrained remains an open problem. We present LDL, a light weight defense against LAB MIAs. LDL works by constructing a high-dimensional sphere around queried samples such that the model decision is unchanged for (noisy) variants of the sample within the sphere. This sphere of label-invariance creates ambiguity and prevents a querying adversary from correctly determining whether a sample is a member or a nonmember. We analytically characterize the success rate of an adversary carrying out a LAB MIA when LDL is deployed, and show that the formulation is consistent with experimental observations. We evaluate LDL on seven datasets -- CIFAR-10, CIFAR-100, GTSRB, Face, Purchase, Location, and Texas -- with varying sizes of training data. All of these datasets have been used by SOTA LAB MIAs. Our experiments demonstrate that LDL reduces the success rate of an adversary carrying out a LAB MIA in each case. We empirically compare LDL with defenses against LAB MIAs that require retraining of DNN models, and show that LDL performs favorably despite not needing to retrain the DNNs.
translated by 谷歌翻译
自动驾驶汽车必须能够可靠地处理不利的天气条件(例如,雪地)安全运行。在本文中,我们研究了以不利条件捕获的转动传感器输入(即图像)的想法,将其下游任务(例如,语义分割)可以达到高精度。先前的工作主要将其作为未配对的图像到图像翻译问题,因为缺乏在完全相同的相机姿势和语义布局下捕获的配对图像。虽然没有完美对准的图像,但可以轻松获得粗配上的图像。例如,许多人每天在好天气和不利的天气中驾驶相同的路线;因此,在近距离GPS位置捕获的图像可以形成一对。尽管来自重复遍历的数据不太可能捕获相同的前景对象,但我们认为它们提供了丰富的上下文信息来监督图像翻译模型。为此,我们提出了一个新颖的训练目标,利用了粗糙的图像对。我们表明,我们与一致的训练方案可提高更好的图像翻译质量和改进的下游任务,例如语义分割,单眼深度估计和视觉定位。
translated by 谷歌翻译
分散的多代理导航的代理缺乏世界知识,无法可靠地制定安全和(接近)最佳计划。他们将决定基于邻居的可观察状态,这隐藏了邻居的导航意图。我们提出了通过机构间沟通的增强分散导航,以提高其绩效和援助代理,以做出合理的导航决策。在这方面,我们提出了一种新颖的增强学习方法,用于使用选择性间隔沟通来避免多代理碰撞。我们的网络学会决定“何时”并与“谁”交流,以端到端的方式索取其他信息。我们将沟通选择作为链接预测问题,在该问题中,如果可以观察到的信息,网络可以预测是否需要通信。传达的信息增加了观察到的邻居信息以选择合适的导航计划。随着机器人的邻居数量的变化,我们使用多头自发项机制来编码邻居信息并创建固定长度的观察向量。我们验证我们提出的方法在挑战模拟基准中实现了多个机器人之间的安全有效导航。通过学习的通信,我们的网络的性能比在各种指标(例如到目标和碰撞频率)中的现有分散方法的表现要好得多。此外,我们展示了网络有效地学会在高复杂性情况下进行必要时进行交流。
translated by 谷歌翻译
我们为仓库环境中的移动机器人提供基于新颖的强化学习(RL)任务分配和分散的导航算法。我们的方法是针对各种机器人执行各种接送和交付任务的场景而设计的。我们考虑了联合分散任务分配和导航的问题,并提出了解决该问题的两层方法。在更高级别,我们通过根据马尔可夫决策过程制定任务并选择适当的奖励来最大程度地减少总旅行延迟(TTD)来解决任务分配。在较低级别,我们使用基于ORCA的分散导航方案,使每个机器人能够独立执行这些任务,并避免与其他机器人和动态障碍物发生碰撞。我们通过定义较高级别的奖励作为低级导航算法的反馈来结合这些下层和上层。我们在复杂的仓库布局中进行了广泛的评估,并具有大量代理商,并根据近视拾取距离距离最小化和基于遗憾的任务选择,突出了对最先进算法的好处。我们观察到任务完成时间的改善高达14%,并且在计算机器人的无碰撞轨迹方面提高了40%。
translated by 谷歌翻译
由于大规模数据集的可用性,通常在特定位置和良好的天气条件下收集的大规模数据集,近年来,自动驾驶汽车的感知进展已加速。然而,为了达到高安全要求,这些感知系统必须在包括雪和雨在内的各种天气条件下进行稳健运行。在本文中,我们提出了一个新数据集,以通过新颖的数据收集过程启用强大的自动驾驶 - 在不同场景(Urban,Highway,乡村,校园),天气,雪,雨,阳光下,沿着15公里的路线反复记录数据),时间(白天/晚上)以及交通状况(行人,骑自行车的人和汽车)。该数据集包括来自摄像机和激光雷达传感器的图像和点云,以及高精度GPS/ins以在跨路线上建立对应关系。该数据集包括使用Amodal掩码捕获部分遮挡和3D边界框的道路和对象注释。我们通过分析基准在道路和对象,深度估计和3D对象检测中的性能来证明该数据集的独特性。重复的路线为对象发现,持续学习和异常检测打开了新的研究方向。链接到ITHACA365:https://ithaca365.mae.cornell.edu/
translated by 谷歌翻译
野外的机器学习模型已被证明在训练过程中容易受到特洛伊木马攻击的影响。尽管已经提出了许多检测机制,但已证明强大的适应性攻击者对他们有效。在本文中,我们旨在回答考虑一个聪明和适应性对手的问题:(i)强大的攻击者将木马所需的最小实例数量是多少? (ii)这样的攻击者是否有可能绕过强大的检测机制?我们提供了这种模型中发生的对抗和检测机制之间的对抗能力和战略相互作用的分析表征。我们根据输入数据集的分数来表征对手的能力,该输入数据集的分数可以嵌入特洛伊木马触发器。我们表明,损耗函数具有一个集中结构,该结构导致设计有效的算法,以确定这一部分,并在最优性方面可证明的界限。我们提出了一种子模型特洛伊算法,以确定样品的最小分数,以注入特洛伊木马触发器。为了逃避对木马模型的检测,我们将对手和特洛伊木马检测机制之间的战略相互作用建模为两人游戏。我们表明,对手以概率赢得了游戏,从而绕开了检测。我们通过证明特洛伊木马模型和干净模型的输出概率分布在遵循Min-Max(MM)Trojan算法时相同。我们对MNIST,CIFAR-10和EUROSAT数据集进行了广泛的评估。结果表明,(i)使用subsodular trojan算法,对手需要将特洛伊木马扳机嵌入很少的样品中,以在Trojan和干净的样品上获得高精度,以及(ii)MM Trojan算法会产生训练有素的经训练的Trojan以概率1逃避检测的模型。
translated by 谷歌翻译
很少的识别涉及训练图像分类器,以使用几个示例(Shot)在测试时间区分新颖概念。现有方法通常假定测试时间的射击号是事先知道的。这是不现实的,当火车和测试射击不匹配时,流行和基础方法的性能已被证明会受到影响。我们对该现象进行了系统的经验研究。与先前的工作一致,我们发现射击灵敏度在基于度量的几个学习者中广泛存在,但是与先前的工作相反,较大的神经体系结构为变化的测试拍摄提供了一定程度的内置鲁棒性。更重要的是,通过消除对样品噪声的敏感性,一种基于余弦距离的简单,以前已知但非常忽略了一类方法,可以极大地改善对射击变化的鲁​​棒性。我们为流行和最近的几个弹药分类器提供了余弦替代品,从而扩大了它们对现实环境的适用性。这些余弦模型一致地提高了射击力,超越先前的射击状态,并在一系列基准和架构上提供竞争精度,包括在非常低的射击方案中取得的显着增长。
translated by 谷歌翻译
当前的Modus Operandi在改编预训练的模型中涉及更新所有骨干参数,即,完整的微调。本文介绍了视觉及时调整(VPT),作为视觉中大规模变压器模型的全面微调的有效替代方案。VPT从最近有效地调整大型语言模型的最新进展中汲取灵感,在输入空间中仅引入了少量的可训练参数(少于模型参数),同时保持模型骨架冻结。通过对各种下游识别任务的广泛实验,我们表明VPT与其他参数有效调整协议相比获得了显着的性能增长。最重要的是,在许多情况下,VPT甚至在模型能力和培训数据量表的许多情况下都胜过全面的微调,同时降低了每任务的存储成本。
translated by 谷歌翻译
本文考虑了多智能经纪人强化学习(MARL)任务,代理商在集会结束时获得共享全球奖励。这种奖励的延迟性质影响了代理商在中间时间步骤中评估其行动质量的能力。本文侧重于开发学习焦点奖励的时间重新分布的方法,以获得密集奖励信号。解决这些MARL问题需要解决两个挑战:识别(1)沿着集发作(沿时间)的长度相对重要性,以及(2)在任何单一时间步骤(代理商中)的相对重要性。在本文中,我们介绍了奖励中的奖励再分配,在整容多智能体加固学习(Arel)中奖励再分配,以解决这两个挑战。 Arel使用注意机制来表征沿着轨迹(时间关注)对状态转换的动作的影响,以及每个代理在每个时间步骤(代理人注意)的影响。 Arel预测的重新分配奖励是密集的,可以与任何给定的MARL算法集成。我们评估了粒子世界环境的具有挑战性的任务和星际争霸多功能挑战。 arel导致粒子世界的奖励较高,并改善星际争端的胜利率与三个最先进的奖励再分配方法相比。我们的代码可在https://github.com/baicenxiao/arel获得。
translated by 谷歌翻译